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ABSTRACT

We describe a method for retroactively improving the accuracy of a General Transit Feed Specification (GTFS)
package by using a real-time vehicle location data set provided by the transit agency. Once modified, the GTFS
package contains the observed rather than the scheduled transit operations and can be used in research assessing
network performance, reliability and accessibility. We offer a case study using data from the Toronto Transit
Commission and find that substantial aggregate accessibility differences exist between scheduled and observed
services. This ‘error’ in the scheduled GTFS data may have implications for many types of measurements
commonly derived from GTFS data.

1. Introduction

Over the last ten years, the General Transit Feed Specification
(GTFS) has emerged as an industry standard for publishing data about
transit operations. Data in this format has issued from more than a
thousand transit agencies around the world and that data has been
incorporated into just as many user-facing routing applications. GTFS
data defines transit schedule information in a format that is essentially a
routable spatiotemporal network graph with stops as nodes, scheduled
travel between stops as edges, and estimated travel times as the cost.
This not only allows people to find their way from A to B, but due to the
open nature of the standard, has allowed researchers to ask interesting
questions and have them answered with a degree of accuracy and scope
that would have been impossible before GTFS. Such questions, still very
much under active research, include measures of disparities in service
provision (Farber et al., 2016; Fransen et al., 2015), temporal varia-
bility (Farber et al., 2014), the role of relative travel times and costs in
mode choice (Owen and Levinson, 2015; Salonen and Toivonen, 2013),
the degree of accessibility offered by competing transit development
plans (Farber and Grandez, 2017), and many others. Yet, such research
using GTFS is subject to a serious criticism: it is based entirely on
schedules, which are expectations about services, rather than observa-
tions of them. It is common knowledge that transit does not run pre-
cisely as scheduled, and that it often differs substantially from the
schedule. Occasionally there are major unscheduled disruptions due to
severe congestion, vehicle breakdowns, or signal malfunctions. These
disruptions are a fact of life for most transit users and well acknowl-
edged by transit agencies themselves.
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One way that agencies have acknowledged service delays and dis-
ruptions is to issue live updates to their transit schedules. While for
some smaller agencies, these take the form of hastily posted signs and
twitter notifications, for many larger operations, the effort to update
their customers has become perpetual. We refer here to the “real-time”
data sources that contain constantly updated arrival predictions as well
as live vehicle location reports based on Geographic Positioning
Systems (GPS). These algorithmically produced updates have proven
quite useful to many transit users (Brakewood et al., 2015; Tang and
Thakuriah, 2012; Watkins et al., 2011), and the automatic vehicle lo-
cation (AVL) systems that enable them have proven useful to transit
researchers who have primarily used them to assess reliability at the
level of stops or lines (e.g. El-Geneidy et al., 2011; Tribone et al., 2016)
or to propose ways for transit operators to improve reliability or pre-
diction accuracy. Yet transportation researchers have not yet to our
knowledge made use of such data to answer research questions that
involve routing across the transit network, a type of query enabled by
GTFS data.

In this paper, we propose a novel way of making this “real-time”
data available to answer precisely the same sorts of research questions
that people have already been asking of and answering with GTFS. We
do this by using it to update an existing, schedule-based GTFS package
with observed trips and arrival times, yielding a GTFS package based on
observation rather than schedule. Of course, such data cannot be used
directly for routing actual passengers since the events it describes will
already have transpired. Yet, most research questions currently an-
swered by GTFS data might be better directed not at a schedule but at a
measure of average performance which could be derived from past
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events, or at the events of some particular day or time in the past.

In the remainder of this paper, we will describe our method for
creating this retrospective GTFS package from GTFS and real-time data.
We will then undertake a brief case study of the Toronto Transit
Commission to illustrate the potential utility of this approach. Because
real-time data is currently not well standardized, we will have to de-
scribe our algorithm to some extent as it was designed around a par-
ticular standard - the data available from the NextBus company's API
(NextBus, 2016) which is used in Toronto and many other cities. The
code we developed is available online,' and we encourage others to use
and contribute to the project. Work to extend the code to accommodate
other real-time data standards is underway, and we will try to describe
the project here with a degree of abstraction sufficient to allow the
reader to see how the technique can be applied to any real-time data
standard.

2. Required data
Our method relies upon three data sets:

1. A current GTFS package, which will be used primarily to provide the
locations of stops and stations.

2. A real-time feed of vehicle locations which are preferably associated
with some route information.

3. A routable road and/or rail network data set including all ways used
by transit vehicles.

The method we have developed is based on the information pro-
vided by a basic GTFS package, and the real-time information provided
by the API delivered by the NextBus company, which currently serves
data for about 50 agencies around the world (NextBus, 2016). Other
real-time data formats exist, and real-time data has not yet standardized
to the same degree as schedule data; some agencies provide different
information in their feeds. We believe that our algorithm should be
generalizable to most real-time data feeds, so long as they provide ac-
curate vehicle locations and update them at a sufficient frequency.

3. Algorithm
3.1. Outline

The basic ontological units of a GTFS package are routes, trips,
blocks, and stops. Routes are sets of typical service patterns grouped
under a single name, usually a number. Trips are particular occasions
when a vehicle goes from one end of a route to the other, serving an
ordered set of stops. Blocks are sets of trips in the order of their per-
formance, operated continuously by the same vehicle.> Stops are the
locations where passengers can access a trip.

Real-time data often does not describe the transit system in the same
terms as does GTFS; it is not designed to provide a routable network,
but to give updates on particular vehicles and lines. The task of our
algorithm then must be to translate the description provided by the
real-time data into the terms/units used by GTFS. In the real-time data
provided by NextBus for example, there is no explicit concept of trips or
blocks and these must be inferred. The focus of the NextBus data is on
vehicles and stops.

Our basic approach is to monitor vehicles in real-time as their lo-
cations are updated, keeping track of where they are and when. When
we observe that a vehicle seems to have completed a trip, we process
the data associated with that trip and begin building up a new trip for
the vehicle if it is still in service. Finished trips are associated with stops
from the schedule data and stop times are derived from the timestamps

* https://github.com/SAUSy-Lab.
2 passengers can often stay on the vehicle as it transitions between trips.
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of vehicles passing those stops. Next, trips are assigned to blocks and
routes and the data is stored in a database. At this point, it is
straightforward to extract the data in the text-based GTFS format. Much
of the hard work of the algorithm is in error handling and data cleaning
as reported vehicle locations are always a bit fuzzy and occasionally
spurious.

3.2. Collecting and storing the data

We developed a program in Python to collect real-time data from
the NextBus API, which is used by the Toronto Transit Commission. The
NextBus API is a publicly available web service designed to serve real-
time transit data primarily to mobile phone or web applications. One of
its functions is to report the latest locations for all operating vehicles in
the fleet, the idea being that these will be displayed to users on a mobile
web map. For each vehicle, the API returns information on the vehicle's
ID, route, heading, last known location, and the time it reported that
location to the server. Vehicles update their location every 20s on
average.

Our program requests all updated vehicle locations every 10 s to
ensure that all new data is collected and then stores the locations in a
PostGIS database along with a timestamp and the other associated in-
formation.

3.3. Delimiting trips and blocks

We assume that each vehicle reported to be in service is operating a
trip and that that trip belongs to a schedule block. Each vehicle under
observation must be assigned a unique trip id and a unique block id. A
block ends only when the vehicle goes out of service, defined as failing
to report a location for three or more minutes (or some other threshold,
as appropriate). The NextBus API did not explicitly report when a ve-
hicle was going out of service. The end of a schedule block implies the
end of any ongoing trip, but a trip may also end in a number of other
conditions. For the data available to us from NextBus, we defined these
as

1. The vehicle reporting a different route.
2. The vehicle reporting a different headsign.

Headsigns typically indicate the direction of travel, i.e. “501 E” and
a change to “501 W” implies that the terminal station has been reached
and the return trip begun in the opposite direction. With the NextBus
data, we were fortunate that the headsign and route changes were a
good indicator of trip endings. Other real-time or historical data sets
could necessitate other techniques, perhaps simpler, perhaps not, for
determining when trips are ending. For pure GPS data, it may be ne-
cessary to determine when a vehicle turns back on its route to go the
other way.

Once a trip has ended, all information associated with that trip is
pulled from the database and processed, as the rest of this section will
describe. If the vehicle is still in service, a new trip is started for that
vehicle, and new location reports begin to accumulate in the database
associated with the new trip ID.

3.4. Spatial matching and positional error handling

Visual inspection of the data provided by the NextBus API showed
normal, expected levels of GPS position error for most points, but also
some extreme errors associated with trips either starting or ending in a
bus garage, where vehicles reported positions many kilometres from the
last reported location before going out of service. The extreme errors
were easily dealt with by measuring the speed (distance/time) between
location reports. Segments over 120 km/h indicated obvious errors and
the offending points were removed accordingly. As these were almost
always associated with vehicles entering or leaving service, this was not
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GPS traces not

a major problem.

Ordinary GPS measurement error did present a more serious issue
when coupled with the relatively low sampling rate of the data (about
every 20 s). There were often times when no location would be reported
near a stop as the vehicle must have passed that stop quickly. This was
particularly problematic where the stop was positioned just before or
after a turn in the route, as can be seen in Fig. 1.

To improve the spatial resolution of the data throughout the dura-
tion of the observed trip, and to catch any substantial positional errors
that remained, we matched the sampled locations of the trip to a
plausible route on the network. Map-matching is a common task in
modern on-board navigation systems and the problem has been well
researched (e.g. Krumm et al., 2007; Lou et al., 2009; Newson and
Krumm, 2009).

We matched our trips to a combination of roads and streetcar tracks
with detailed data from OpenStreetMap® using the Open Source
Routing Machine (OSRM)4, an open-source routing software. An ex-
ample of the matched result compared to an original GPS input can be
seen in Fig. 2.

OSRM accepts a series of points and (optionally) timestamps and
positional error estimates which it uses to match the route to the pro-
vided network. It also allows for custom vehicle profiles; we developed
one for transit vehicles which gave us the ability to match to streetcar
tracks and agency-managed service roads, as well as to adjust ex-
pectations about realistic expected travel speeds. For each returned
match, OSRM also estimates the probability that the returned route is
the correct one based on a number of factors using a naive Bayes
classifier. Visual inspection of many thousands of matched geometries
indicated that these estimates were very effective at picking out erro-
neous matchings produced by positional or network data errors.

At first, as many as 10% of our trips were able to find only very poor
matches (P < 0.5). Visual inspection revealed that most of these were
attempting to pass through intersections tagged with incorrect turn or
access restrictions. Once these errors were corrected in the
OpenStreetMap data, our error rate (again, P < 0.5) fell to around 1.5%
of all trips. These badly mismatched trips appear to be mostly the result
of GPS noise in urban canyons, and for the purpose of this analysis such
trips were discarded. Further refinement of either the routing profile or
the street network data set could almost certainly increase the match
rate further, though we found the 1.5% error rate acceptable for the
purpose of demonstrating the technique here and do not see reason to

3 http://www.openstreetmap.org.
4 http://project-osrm.org/.
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Fig. 1. Map showing GPS tracks overlaid on street centerlines.
Positional error and low sampling rates mean the GPS tracks
may be poorly related to the actual path taken by the vehicle.

suspect that it substantially influenced the case study which follows.
Removed trips were not concentrated in any one part of the city to a
great degree.

3.5. Determining stop times

Once we have a trip matched to the network, with timestamps as-
sociated with matched vehicle locations on that route, the next step is to
determine which stops were passed and estimate their times of arrival
and departure. From the trips' reported heading and route ID, we can
find a plausible set of stops from the schedule-based GTFS package. This
is especially easy if the metadata associated with vehicles in the real-
time data provides trip ids that match those in the schedule-based
GTFS, as would be the case for the GTFS-Realtime standard developed
by Google. In our case, the set of stops being serviced came from the
NextBus API's routeConfig command,” though these were identical to
those provided in the GTFS package. From these stops, only those
within 20 m of the matched route of the vehicle are used and these are
then matched to the nearest point on that route. This is an important
step, as many vehicles may not operate their full route, either by taking
a detour around a blockage or by making a short-turn to reduce
bunching.

The time for the stop can then be estimated by linear interpolation
from the surrounding vehicle reports (Fig. 3). Ideally, it should be
possible also to estimate dwell times if there are two or more location
reports in the vicinity of the stop. These would then be encoded as
different arrival and departure times for the stop. In practice, we found
this difficult to implement, and as long as the departure time is more or
less correct, the dwell time would make little difference to any routing
on the network.

3.6. Constructing the retrospective GTFS package

GTFS is a text-based format with a specified table structure® and
comma-delimited files. Up to this point, we have not specified how data
should be stored as it is processed. In our implementation, all data is
stored in a PostGIS database, where some of the spatial operations are
executed. This database is structured in essentially the same way as
GTFS data with a table each for trips, stop times, routes, stops, and
service dates. Since our data is essentially already in a tabular format,
we need only select all required fields and format them according to the

S https://www.nextbus.com/xmlFeedDocs/NextBusXMLFeed.pdf.
S https://developers.google.com/transit/gtfs/reference/.
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Fig. 2. Map showing network path (red, solid) derived from example GPS coordinates (purple, dashed). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. Diagram showing interpolation method
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Fig. 4. Relative (percent change) differences between scheduled and real-time access scores. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)
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Fig. 5. Scheduled and real-time travel times resulting in accessibility differences.

GTFS documentation. A distinct service ID is generated for each day of
observed data. All trips with more than two observed stops are in-
cluded.

4. Accessibility case study

We now demonstrate the potential utility of the retrospective GTFS
by comparing a simple measure of average accessibility to jobs in
Toronto between scheduled and retrospective data sets for the same
period. The Toronto Transit Commission (TTC) operates four rapid
transit lines as well as a grid network of high frequency surface bus and
streetcar routes. Employment in Toronto is concentrated in the Central
Business District (CBD) and there is high residential density near the
CBD, with lower density residential neighbourhoods in the rest of the
city. Public transit mode share in Toronto for commuting trips is
36.55% (Statistics Canada, 2011).

Accessibility to jobs via transit is a measure that has recently been
computed using scheduled GTFS packages (Farber and Fu, 2017; El-
Geneidy et al., 2016; Owen and Levinson, 2015). For our case study, we
computed travel times from all census dissemination areas (DAs) in
Toronto to all traffic analysis zones (TAZs). This was done using
OpenTripPlanner’, an open source multimodal routing engine, which
computed centroid-to-centroid travel times inclusive of walking,
waiting, in-vehicle, and transferring times. From each DA we calculated
the total number of jobs (aggregated to TAZs) accessible within 45 min
of travel time, for every minute in the morning rush-hour period
(7 am-9 am), over two days of both observed and scheduled data. This
resulted in a set of time-varying accessibility scores for each DA, which
we then averaged. The difference between the average accessibility
between the retrospective and scheduled data sets is shown in Fig. 4.
Unfortunately, real-time data were not available for the TTC's four
rapid transit lines (black lines in Fig. 4), so for these we simply copied
the scheduled GTFS data for these routes in our real-time GTFS package
prior to our analysis.

Negative values in Fig. 4 (red) denote locations where accessibility
scores using the real-time network are lower than those using the
scheduled network, and indicate where observed service culminated in
lower than scheduled levels of accessibility to jobs. Positive values
(blue) denote the opposite; these are areas where observed accessibility
levels are higher than those obtained by using the scheduled network.

It may perhaps come as a surprise to some readers that actual op-
erations could result in greater average local accessibility than strict
adherence to the schedule. This is likely due to conservative schedules,
expecting delays that were not actually encountered (Wessel and
Widener, 2016). It is also worth noting that in Toronto's case, many
lines are not actually operated with the goal of adhering to a published
schedule; rather the operational goal is to maintain adequate headways

7 http://www.opentripplanner.org/.
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between vehicles, especially during peak hours. In this case, the speed
of vehicles across the route is not explicitly defined and drivers will
likely go as fast as traffic permits while still maintaining space from the
leading vehicle. Such operational practices (headway maintenance
versus schedule adherence) can be indicated in GTFS schedules,® yet
many agencies do not make use of these optional features.

The two accessibility scores obtain similar values nearer to the city
centre and along the rapid transit lines, largely because the information
on these lines is identical between the two packages. Differences in
accessibility are clustered in certain neighbourhoods and along specific
routes where transit operations appear to differ substantially from the
published schedule. This is further visualized in Fig. 5 with two com-
parative minute-by-minute travel time plots, each from a residential
neighbourhood (The Beaches and Eglinton West) to Toronto's Central
Business District (CBD).

The left plot is an example of where transit operates with greater
headways and results in longer trips compared to the published sche-
dule. Presumably there were less transit vehicles in operation than
scheduled during this period or there was severe vehicle bunching.
Conversely, the plot on the right is an example of where travel times
from the real-time network are on average lower than those from the
scheduled network. This could be because the agency overestimated
operational delays when scheduling their service.

Interestingly, our case study finds that the aggregate population-
weighted accessibility scores for the entire city are almost equal when
comparing the two networks. For the 45 minute travel time threshold
shown in Fig. 4, the scheduled data set had an overall average acces-
sibility score of 268,100 jobs, while the real-time data set resulted in a
score of 269,022 jobs; a difference of only 0.34%. Similar results were
found when testing different travel time thresholds.

5. Discussion

What is interesting in this case study is not that there is substantial
deviation from the schedule, but that this deviation does not seem to be
random. Our measure of cumulative accessibility, even when averaged
over four hours of peak period service from two days of operation
showed what appears to be systematic variation that affects neigh-
bourhoods differently. This means that measures of accessibility, travel
time, etc. derived from GTFS data may not be a good estimate of actual
values even when averaged.

It would not be fair to characterize such non-adherence to a GTFS
schedule as an operational failure. Transit systems were operating be-
fore GTFS data came into being and many of them are still operating in
the same way. For example, scheduled transit is often operated by
timepoints, usually a small subset of stops at which strict schedule
adherence is desirable. Arrival times for stops between these are

8 https://developers.google.com/transit/gtfs/reference/frequencies-file.
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undefined in practice yet GTFS demands that a precise arrival and de-
parture time be given for these stops. In reality, drivers may make no
attempt to adhere to these times and may not even be aware of them.
Similarly, we should be careful before interpreting deviations from
GTFS schedules with a spatial equity lens. GTFS data is provided by
agencies primarily to enable customer-facing trip-planning applica-
tions, not to enable researchers to conduct various kinds of accessibility
analysis with a high degree of accuracy. The goal of our work is to
provide a data set more suitable for such research applications.

As researchers continue to make use of the wealth of data available
via GTFS, they should be aware that such data may differ systematically
from actual transit operations. Measures derived from scheduled GTFS
data alone may be subject to bias if there is a mismatch between the
data and the operational reality.
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